- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Basrai, Insiya (2)
-
Abdul_Nazeer, Aahil (1)
-
Addepalli, Isabel (1)
-
Aggarwal, Deepti (1)
-
Agnihotri, Prisha (1)
-
Ali, Ahlaam_A (1)
-
Amorosi, Clara_J (1)
-
Anand, Abhinav (1)
-
Anderson, Leah_M (1)
-
Atukuri, Ashna (1)
-
Awi, Thang (1)
-
Bathala, Hitha (1)
-
Bhide, Sarang (1)
-
Brewer, Rebecca (1)
-
Burris, Owen (1)
-
Cantor, Benjamin_B (1)
-
Cervantes, Jocelyn (1)
-
Chakraborty, Tridib (1)
-
Champlin, James (1)
-
Chbihi, Ameen (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Isoprene is the most abundant nonmethane biogenic hydrocarbon emitted by some plants, mostly trees. It plays critical roles in atmospheric chemistry by contributing to ozone and aerosol formation. Isoprene also benefits plants, particularly under stress, through its signaling roles. Legume crops like soybean were thought to have evolutionarily lost isoprene synthase (ISPS) and are typically considered nonemitters. Here, we report that damage to soybean leaves by wounding or burning triggered a burst of isoprene emission from the undamaged part of the leaves. In silico analysis identified intactISPSgenes in the soybean genome, with features similar to known ISPSs. Protein made from these gene sequences catalyzed isoprene production in the presence of dimethylallyl diphosphate. Isoprene emission in soybeans was linked to reduced photosynthesis rates and stomatal conductance. Metabolomic analysis showed that leaf damage caused a surge in glyceraldehyde 3-phosphate and pyruvate levels, leading to an increase of most of the methylerythritol 4-phosphate pathway metabolites.more » « lessFree, publicly-accessible full text available June 17, 2026
-
Geck, Renee_C; Moresi, Naomi_G; Anderson, Leah_M; yEvo_Students; Addepalli, Isabel; Aggarwal, Deepti; Agnihotri, Prisha; Ali, Ahlaam_A; Amorosi, Clara_J; Anand, Abhinav; et al (, G3: Genes, Genomes, Genetics)Abstract Caffeine is a natural compound that inhibits the major cellular signaling regulator target of rapamycin (TOR), leading to widespread effects including growth inhibition. Saccharomyces cerevisiae yeast can adapt to tolerate high concentrations of caffeine in coffee and cacao fermentations and in experimental systems. While many factors affecting caffeine tolerance and TOR signaling have been identified, further characterization of their interactions and regulation remain to be studied. We used experimental evolution of S. cerevisiae to study the genetic contributions to caffeine tolerance in yeast, through a collaboration between high school students evolving yeast populations coupled with further research exploration in university labs. We identified multiple evolved yeast populations with mutations in PDR1 and PDR5, which contribute to multidrug resistance, and showed that gain-of-function mutations in multidrug resistance family transcription factors Pdr1, Pdr3, and Yrr1 differentially contribute to caffeine tolerance. We also identified loss-of-function mutations in TOR effectors Sit4, Sky1, and Tip41 and showed that these mutations contribute to caffeine tolerance. These findings support the importance of both the multidrug resistance family and TOR signaling in caffeine tolerance and can inform future exploration of networks affected by caffeine and other TOR inhibitors in model systems and industrial applications.more » « less
An official website of the United States government
